1. Algunos preliminares de topología y análisis
1.1. Espacios métricos
1.1.1. Topología en espacios métricos
1.1.2. Convergencia en espacios métricos
1.1.3. Convergencia y compacidad
1.1.4. Continuidad en espacios métricos
1.1.5. Conexión en espacios métricos
1.1.6. El teorema del punto fijo de Banach
1.1.7. El teorema de Stone
1.2. Espacios normados
1.2.1. El espacio C([a; b];Rn)
1.2.2. Normas equivalentes
1.3. El teorema de la función implícita
1.4. El teorema de Ascoli–Arzelà
2. Integración elemental de ecuaciones diferenciales
2.1. Integración elemental de ecuaciones de primer orden
2.1.1. Ecuaciones lineales
2.1.2. Ecuaciones de variables separables
2.1.3. Ecuaciones resolubles por cambio de variable
2.1.4. Ecuaciones exactas. Factores integrantes
2.2. Integración numérica de ecuaciones diferenciales ordinarias (de primer orden)
2.2.1. Método de Euler
2.2.2. Métodos de Runge–Kutta
2.3. Sistemas de ecuaciones lineales
2.3.1. Sistemas homogéneos con coeficientes constantes
2.3.2. Método de variación de las constantes
2.3.3. Ecuaciones lineales de orden superior
2.4. Problemas de repaso de ecuaciones diferenciales ordinarias
3. Existencia y unicidad de solución
3.1. Preliminares
3.2. Teoremas de Cauchy–Lipschitz
3.3. El teorema de existencia de Peano
3.4. El teorema de extensión
3.5. Continuidad con respecto a las condiciones iniciales
3.6. El teorema de Kneser
3.7. Ejemplo “patológico” de no unicidad
3.8. El ejemplo de Müller
3.9. El teorema de Kamke
3.10. Problemas
4. Estudio de la estabilidad. Algunos teoremas clásicos
4.1. Comportamiento cualitativo de soluciones de sistemas lineales
4.1.1. Sistemas lineales homogéneos (coeficientes constantes)
4.1.2. Sistemas lineales homogéneos (coeficientes variables)
4.1.3. Sistemas lineales no homogéneos
4.1.4. Diagramas de fases de sistemas planos
4.2. Comportamiento cualitativo de soluciones de sistemas no lineales
4.3. El teorema de la variedad estable
4.4. El teorema de Hartman–Grobman
4.5. El teorema de Lyapunov
4.6. El teorema de Poincaré–Bendixson
4.7. Ecuación de Lorenz. Introducción al caos
4.8. Problemas
5. Modelo de Lotka–Volterra. Aplicaciones
5.1. Modelo clásico
5.2. Variantes del modelo clásico
5.3. Problemas
6. Solucionario
6.1. Soluciones a los problemas del capítulo 2
6.2. Soluciones a los problemas del capítulo 3
6.3. Soluciones a los problemas del capítulo 4
6.4. Soluciones a los problemas del capítulo 5
Índice de figuras
Bibliografía
Índice alfabético